N-gram-based Tense Models for Statistical Machine Translation

نویسندگان

  • Zhengxian Gong
  • Min Zhang
  • Chew Lim Tan
  • Guodong Zhou
چکیده

Tense is a small element to a sentence, however, error tense can raise odd grammars and result in misunderstanding. Recently, tense has drawn attention in many natural language processing applications. However, most of current Statistical Machine Translation (SMT) systems mainly depend on translation model and language model. They never consider and make full use of tense information. In this paper, we propose n-gram-based tense models for SMT and successfully integrate them into a state-of-the-art phrase-based SMT system via two additional features. Experimental results on the NIST Chinese-English translation task show that our proposed tense models are very effective, contributing performance improvement by 0.62 BLUE points over a strong baseline.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-scale Discriminative n-gram Language Models for Statistical Machine Translation

We extend discriminative n-gram language modeling techniques originally proposed for automatic speech recognition to a statistical machine translation task. In this context, we propose a novel data selection method that leads to good models using a fraction of the training data. We carry out systematic experiments on several benchmark tests for Chinese to English translation using a hierarchica...

متن کامل

Head automata for speech translation

This paper presents statistical language and translation models based on collections of small finite state machines we call “head automata”. The models are intended to capture the lexical sensitivity of N-gram models and direct statistical translation models, while at the same time taking account of the hierarchical phrasal structure of language. Two types of head automata are defined: relation...

متن کامل

Combining Word-Level and Character-Level Models for Machine Translation Between Closely-Related Languages

We propose several techniques for improving statistical machine translation between closely-related languages with scarce resources. We use character-level translation trained on n-gram-character-aligned bitexts and tuned using word-level BLEU, which we further augment with character-based transliteration at the word level and combine with a word-level translation model. The evaluation on Maced...

متن کامل

Distortion Models for Statistical Machine Translation

In this paper, we argue that n-gram language models are not sufficient to address word reordering required for Machine Translation. We propose a new distortion model that can be used with existing phrase-based SMT decoders to address those n-gram language model limitations. We present empirical results in Arabic to English Machine Translation that show statistically significant improvements whe...

متن کامل

Minimum Translation Modeling with Recurrent Neural Networks

We introduce recurrent neural networkbased Minimum Translation Unit (MTU) models which make predictions based on an unbounded history of previous bilingual contexts. Traditional back-off n-gram models suffer under the sparse nature of MTUs which makes estimation of highorder sequence models challenging. We tackle the sparsity problem by modeling MTUs both as bags-of-words and as a sequence of i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012